Números Complejos.
Unidad imaginaria. Forma binómica o canónica. Operaciones en forma binómica. Representación gráfica. Forma polar o trigonométrica. Producto y división en forma polar. Teorema de DeMoivre. Raíces n-ésimas.
Lógica
Proposiciones. Valores de verdad. Proposiciones simples. Proposiciones compuestas. Tablas de verdad. Operaciones con proposiciones: negación, conjunción, disyunción, disyunción exclusiva o diferencia simétrica, condicional y bicondicional. Condición necesaria y suficiente. Proposiciones equivalentes. Condicionales directo, recíproco, contrario y contrarrecíproco. Leyes lógicas o tautologías: involución, idempotencia, conmutatividad, asociatividad, distributividad, ley de De Morgan, contrarecíproco, implicación, ley de absorción. Funciones proposicionales, cuantificadores.
Conjuntos
Conceptos primitivos: conjunto, elemento y pertenencia. Definición por extensión y por comprensión. Representación simbólica. Representación gráfica: diagramas de Venn. Cardinalidad. Conjuntos especiales: referencial, conjunto unitario y conjunto vacío. Relaciones entre conjuntos: igualdad, inclusión, inclusión estricta. Igualdad de conjuntos y doble inclusión. Familia de partes. Operaciones entre conjuntos: complemento absoluto, complemento relativo o diferencia, unión, intersección y diferencia simétrica. Conjuntos disjuntos o mutuamente excluyentes. Propiedades de las operaciones: involución, absorción, idempotencia, conmutatividad, distributividad, leyes de De Morgan, referencial y vacío. Producto cartesiano.
Vectores en R2 y R3
Vectores en el plano y en el espacio. Igualdad, longitud o norma o magnitud. Suma, multiplicación por un escalar, producto punto o escalar. Proyección ortogonal de un vector sobre otro. Producto vectorial.
Geometría del Espacio.
Rectas en el plano y en el espacio: ecuación vectorial y paramétrica. Planos: ecuación vectorial y paramétrica. Ecuación normal. Distancia: de un punto a un plano. Ecuación normal. Posiciones relativas de rectas y planos.
Sistemas de ecuaciones lineales y matrices
Sistemas de ecuaciones lineales. Soluciones de ecuaciones lineales. Método de eliminación gaussiana y método de reducción de Gauss-Jordan. Sistemas homogéneos de ecuaciones lineales. Matrices y operaciones matriciales. Matriz nula y matriz identidad. La inversa de una matriz. Matrices elementales. Sistemas de ecuaciones lineales e inversibilidad de matrices. Determinantes.
Unidad imaginaria. Forma binómica o canónica. Operaciones en forma binómica. Representación gráfica. Forma polar o trigonométrica. Producto y división en forma polar. Teorema de DeMoivre. Raíces n-ésimas.
Lógica
Proposiciones. Valores de verdad. Proposiciones simples. Proposiciones compuestas. Tablas de verdad. Operaciones con proposiciones: negación, conjunción, disyunción, disyunción exclusiva o diferencia simétrica, condicional y bicondicional. Condición necesaria y suficiente. Proposiciones equivalentes. Condicionales directo, recíproco, contrario y contrarrecíproco. Leyes lógicas o tautologías: involución, idempotencia, conmutatividad, asociatividad, distributividad, ley de De Morgan, contrarecíproco, implicación, ley de absorción. Funciones proposicionales, cuantificadores.
Conjuntos
Conceptos primitivos: conjunto, elemento y pertenencia. Definición por extensión y por comprensión. Representación simbólica. Representación gráfica: diagramas de Venn. Cardinalidad. Conjuntos especiales: referencial, conjunto unitario y conjunto vacío. Relaciones entre conjuntos: igualdad, inclusión, inclusión estricta. Igualdad de conjuntos y doble inclusión. Familia de partes. Operaciones entre conjuntos: complemento absoluto, complemento relativo o diferencia, unión, intersección y diferencia simétrica. Conjuntos disjuntos o mutuamente excluyentes. Propiedades de las operaciones: involución, absorción, idempotencia, conmutatividad, distributividad, leyes de De Morgan, referencial y vacío. Producto cartesiano.
Vectores en R2 y R3
Vectores en el plano y en el espacio. Igualdad, longitud o norma o magnitud. Suma, multiplicación por un escalar, producto punto o escalar. Proyección ortogonal de un vector sobre otro. Producto vectorial.
Geometría del Espacio.
Rectas en el plano y en el espacio: ecuación vectorial y paramétrica. Planos: ecuación vectorial y paramétrica. Ecuación normal. Distancia: de un punto a un plano. Ecuación normal. Posiciones relativas de rectas y planos.
Sistemas de ecuaciones lineales y matrices
Sistemas de ecuaciones lineales. Soluciones de ecuaciones lineales. Método de eliminación gaussiana y método de reducción de Gauss-Jordan. Sistemas homogéneos de ecuaciones lineales. Matrices y operaciones matriciales. Matriz nula y matriz identidad. La inversa de una matriz. Matrices elementales. Sistemas de ecuaciones lineales e inversibilidad de matrices. Determinantes.